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Abstract We present a systematic technique to construct solutions to the Yang-Baler equation 
which depend not only on aspectral parameter but in addition on f h e r  continuous parameters. 
These extra parameters enter the Yang-Baxter equation in a similar way lo the spectral parameler 
but in a non-additive form. 

We exploit the facl that quantum non-compact algebras such as U,(su(l. 1)) and type4 
quantum superalgebras such as U,(gl(lll)) and U,(gl(Zll)) are known to admit non-trivial 
one-parameter families of infinite-dimensional and finite-dimensional imps,  respectively, even 
far generic q. We develop a technique for constructing the corresponding specual-dependent 
R-matrices. As examples, we work out the the R-matrices for the Iiuee quanlum algebras 
mentioned above in certain representations. 

1. Introduction 

Quantized universal enveloping algebras (quantum algebras) [ 1-31 provide a powerful tool 
for finding solutions to the spectral-dependent quantum Yang-Baxter equation (QYBE) [2,4. 
51. There exists one such solution, with trigonometric dependence on the spectral parameter, 
for every pair of representations of any quantum affine Lie algebra. Through the work of 
many authors a large number of such solutions has now been constructed (see references 
in IS]). These solutions depend on a parameter Q, the deformation parameter of the quantum 
algebras. This parameter q is very different in nature from the spectral parameter, because 
q does not enter into the Yang-Baxter equation. 

It is clearly desirable to have families of solutions of the Yang-Baxter equation 
depending continuously on extra parameters, entering in a similar way to the spectral 
parameter. In this paper we develop a method for the construction of such families of 
solutions. The extra parameters enter the Yang-Baxter equation in a non-additive form. 
Special 4 x 4 matrix solutions of this type have been constructed previously by solving 
the Yang-Baxter equation directly [7-IO]. Our general group-theoretic method has the 
advantage of generating infinitely many solutions of any size. Also the chiral Potts model 
has a spectral parameter which enters the Yang-Baxter equation in a non-additive form. 
This solution arises from quantum groups at q a mot of unity only [ l l ,  121. These are 
not related to our solutions however, in which the specbal parameter stays additive and the 
extra parameters are non-additive, Our solutions exist for generic Q. 
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Solutions of the Yang-Baxter equation have various different applications, for example 
as Boltzmann weights of integrable lattice models or as scattering matrices in integrable 
quantum field theories. In all these applications the freedom of having extra continuous 
parameters opens up new and exciting possibilities. We will come hack to this in the 
discussion section. 

The origin of the extra parameters in our solutions are the parameters which are carried 
by the irreps of the associated quantum algebra. Murakami [13] describes such parameters 
as colours carried by irreps. For the type-I quantum superalgebras, there are non-trivial 
one-parameter families of finite-dimensional irreps [I41 for generic q .  For quantum simple 
bosonic Lie algebras families of finite-dimensional representations are possible only when 
the deformation parameter q is a root of unity. However, they do admit parametrized 
families of unitary infinite-dimensional irreps even for generic q. 

The main aim of this paper is to find solutions to the QYBE with extra continuous non- 
additive parameters associated with both the infinite-dimensional irreps of a quantum simple 
Lie algebra and the finite-dimensional irreps of quantum superalgebras. In section 2 we 
develop a systematic and useful technique which is very much in the spirit of the techniques 
in [6] designed to find solutions of the QYBE acting on the tensor product module of three 
different irreps of a quantum algebra. As concrete examples, we work out the solutions 
(R-matrices) associated with a one-parameter family of infinite-dimensional irreps for the 
quantum non-compact algebra U,(su(l, 1)) in section 3, and the R-matrices associated 
with a one-parameter family of finite-dimensional irreps for the quantum superalgebras 
U,(gl(lll)) and U,(gZ(211)) in section 4. 

2. General formalism 

Let G denote a simple Lie (super)algebra of rank r with generators (ei, fi, h i )  and let ai be 
its simple roots. Then the quantum (super)algebra U,(G) can be defined with the structure 
of a (&-graded) quasi-triangular Hopf algebra [15, 41. We will not give the full defining 
relations of U,(G) here but mention that U,(G) has a coproduct structure given by 

A(q hi/Z 1 - 4  - h i / z @ q h , / 2  ~ ( ~ ) = ~ @ ~ - h , / 2 + ~ h , / 2 @ ~  ( a = e i , f i ) ,  (2.1) 
The multiplication rule for the tensor product is defined for elements a, b, c, d E Uq(G) by 

(2.2) 
where [a]  E & denotes the degree of the element a .  

Let TO be a one-parameter family of irreps of U,(G) afforded by the irreducible module 
V(@) in such a way that the highest weight of the irrep depends on the parameter @. 
Assume for any parameter @ that the irrep z~ is affinizable, i.e. it can be extended to 
an irrep of the corresponding quantum affine (super)algebra Uq(6). Consider an operator 
R"l"Z(x) E End(V(@,) @ V(@z)), where x E C is the usual spectral parameter and 
RQ,, are two irreps from the one-parameter family. It has been shown by Jimbo [2] 
that a solution to the linear equations 
R"L"3(x)A"1'z(a) = ~"l"z(u)R"l"z(x) 

R " " W  (x%,(eo) @ m ( q - h O / z )  +j%,(qhoplz) @%,(eo)) (2.3) 

satisfies the QYBE in the tensor product module V(@p,) @ V(@z) @ V(03) of three irreps 
from the one-parameter family 

(a @ b)(c 8 d )  = (-l)lbll'l(uc @ bd) 

V a 6 U,(G) 

= ( x m , ( e o )  @ n.&ho//2) + TQ, (q-ho12) @ m,(eO)) Roi"(x) 

R;P2'"'(x)R~"' (xy)Rg"'(y) = Rg"'(y)RP;' "' (xy)Rz "' ( x ) .  (2.4) 
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In the above, A = T . A ,  with T the twist map defined by T(u@b) = (-l)r41r61b@a, V u ,  b E 
U p ( G )  and Aoi"'(n) = (no, @no2)A(u);  also, if R"l"'(x) = x i  ro,(ui)@ne2(bj),  then 

( x )  = xi  TO, (ai) @ no,(bi) C3 Z etc. Jimbo also showed that the solution to (2.3) IS 

unique, up to scalar functions. The multiplicative spectral parameter x can be transformed 
into an additive spectral parameter U by x = exp(u). 

In all our equations we implicitly use the 'graded' multiplication rule of (2.2). Thus 
the R-matrix of a quantum superalgebra satisfies a 'graded' Yang-Baxter equation which, 
when written as an ordinary matrix equation, contains extra signs 

R"'"2 
I z  

(Ro14*(x))ff (Re1 "~(xY)) : ; '  (R"203 (y))::: (- ~ ) [ ~ ~ [ # ~ + ~ Y ~ [ ~ ' ~ t [ Y ' ~ ~ ~ ~  

- - ( ~ o ~ ~ ~ ( ~ ) ) ~ ; '  ( p ~ * g ( ~ ) ) ; Y "  (-~)[BJIYI+[Y'I[~~+[~II~'I (2.5) 

where [a] denotes the degree of the basis vector U,. However, after a redefinition 

the signs disappear from the equation. Thus any solution of the 'graded' Yang-Baxter 
equation arising from the R-matrix of a quantum superalgebra provides also a solution of 
the standard Yang-Baxter equation after the redefinition in (2.6). 

Now we introduce the (graded) permutation operator Polo2 on the tensor product module 
V(@,) @ V ( % )  such that 

P*'"YU, 8 Up) = (-1)lu1%# C3 U, v U, E V(%)  U# E V ( W  (2.7) 
and set 

( x ) .  (2.8) k4,% ( x )  = pol%R*1"2 

Then (2.3) can be rewritten as 

l i * l @ 2 ( x ) ~ ~ l ~ i ( ~ )  = A @ ~ @ ] ( U ) ~ ~ I ~ ~ ( ~ )  v a E II,(G) 

R*l"(x) ( x m , ( e o )  ~ i r o , ( q - ~ o / ~ )  + no,(qhO/') 8 no,(eo)) (2.9) 

= (ro2(eo) ~3 ne, ( q P 2 )  + xn*l(qho/2) @ no, (eo)) kol*2(x)  

and in terms of k"Io2(x)  the QYBE becomes 

( I  @ i * ~ o ~ ( x ) ) ( P I y x y )  @ I)(Z @ i o z y y ) )  

= ( R o 1 0 3 ( ~ )  @ [ ) ( I  @ k * ~ ~ l ( x y ) ) ( P * ~ y ~ )  @ I) (2.10) 
both sides of which act from V(%) @ V(%) 8 V ( 0 3 )  to V(Q3)  @ V(%) C3 V ( a 1 ) .  Note 
that this equation, if written in matrix form, does not have extra signs in the superalgebra 
case. This is because the definition of the graded permutation operator in (2.7) includes the 
signs of (2.6). 

In order to solve (2.9), we use a method similar to the one developed in [6] for a quite 
different problem. We will normalize the R-matrix iolm2(x) in such a way that 

p t o ? ( x ) ~ 4 1 0 1 ( X - l )  = I (2.11) 

which is usually called the unitarity condition in the literature. Consider three special cases: 
x = 0, x = 00 and x = 1. For these special values of x ,  kol"t(x) satisfies the spectral-free, 
but extra non-additive parameter-dependent QYBE 

(I @ R * I Q 2 ) ( i * I @ j  @ I)([ @ R-) = ( l i " 2 " S  @ I)(I @ k*I9(i*lol @ I ) .  (2.12) 
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Moreover, from (2.9), we have respectively, for x = 0 
iolo2(0)Aoioy(a) = Aolol(a)k*Lo~(0) 
1"1*2(0)  (m.,(q*o/') 8 iro,(s)) = (zo,(eo) B m , ( q  - h o / 2 ) )  i @ i O z ( o )  

A J Bracken et a1 

V u  E U,(G) 
(2.13) 

for x = 03 

~ 0 1 0 z ( ~ ) A o 1 0 2 ( a )  = Ao'"'(a)iolo2(W) V a E Up(C) 
(2.14) 

P l " t ( 0 3 )  (no,(eo) 8 re(q-*09) = (~o , (qh0" )  8 zo, (eo)) ri"l*(w) 
and for x = 1 
~o~oz( l )AoLoz(a )  = Aaor(a)kmlm2(l) 

iol*2(1) (no,(eO) 8 rro2(q-h0/2) + zo,(qh0/*) 8 m?(eo))  

V a E Uq(G) 

(2.15) 

= (ro,(eo) 8 no, ( q - * O / ' )  + m,(ghop) 8 KO, (eo)) i " ~ " ~ ( 1 )  . 
Equations (2.13), (2.14) and (2.15) respectively admit a unique solution for any given 
one-parameter family of irreps of Uq(G), provided such representations are consistently 
affinizable. In the case of a multiplicily-free tensor product decomposition we may write 

(2.16) 

where j~ denotes a highest weight depending on the parameters @ I  and 0 2 .  Let (leg)o,@o,) 
be an orthonormal basis for V ( p )  in V(Op,) 8 V ( 0 z ) .  V ( p )  is also embedded in 
V(@2) @ V(@pt) through the opposite coproduct 6. Let [le:)~~@o,] be the corresponding 
orthonormal basist. Using these bases we define operators P$% and 

V ( @ J  8 V(@d = @ V ( P )  
P 

(2.17) 

Clearly the P>oz : V(Ol) 0 V(Q,Z) -+ V ( p )  c V ( 0 , )  8 V(@,) are projection operators. 
The P$"z : v(@l) 8 V(@z) -+ V ( p )  c V(@pI) 8 v(@pI) are the elementary intertwiners. 
i.e. 

Polo2Am101(a) P = A*20L(a)P:10z V a E U,(G) (2.18) 
and P,"'"' and P>'2 satisfy the relations 

0 , O l p " l " l  =pWt pol"% = a  ,polo, 

P P  PP P (2.19) 

PP P' P' P WP P 

po2ol p y 2  = 8 ,pot"% 

p y 1  pW1 = 8 polor Cp;P,O2 = 1.  

~"l"Z(0) = CE@) q[C(P)-C(m,)-c(s,)l/z polo% 

II vu' " 
P 

We can show [6] that the solutions of (2.13), (2.14) and (2.15) take the particularly 
simple forms 

c 
P 

Rol"yoo) = E ( p )  q-IC(r)-c(o,)-C(o,)l/Z pO,O, 

R"I"I(1) = p y ,  

P (2.20) 
P 

c 

t For the precise definition of this basis see appendix C of [6]. 



Solutions of the quantum Yang-Barter equation 6555 

where C(A) = (A, A + 2p) is the eigenvalue of the quadratic Casimir invariant of G in 
the irrep with highest weight A, p is the half-sum of positive roots of U,(G), and ~ ( p )  is 
the parity of V ( p )  in V ( @ , )  O V(%).  

The first two relations in (2.20) have been derived already by other methods in [3]. Here 
we illustrate the proof of the last relation in (2.20). From the unitarity condition (2.1 1)  it 
follows that for x = 1 

i Q ~ Q y l ) i Q ~ o l ( l ) =  1 .  (2.21) 

P y l )  = cp,(l)P;'". (2.22) 

We write R Q 1 " 2 ( 1 )  in the general form 

P 

Observing (2.21) we at once see that p,(1) satisfies ( ~ ~ ( 1 ) ) '  = 1, so that p , ( l )  = kl.  By 
examining the limit @I + d%, which we can do because 01 and 0 2  are continuous 
parameters (such arguments are not valid for the case considered in [6] and thus the 
derivation of &l) there is much more subtle), and using that, when @, = e2, P?"' 
are the usual projection operators and RQ1"l(1) is the identity, one can conclude that the 
p , ( l )  appearing in (2.22) must equal 1 identically, thus completing the proof. 

We remark that in the present case @DI etc are continuous parameters and so the parities 
E ( K )  in (2.20) can easily be worked out by examining the limit @, --f Q2, in contrast to 
the case considered in [61. 

Multiplying the second equation in (2.13) by P,"'"' from the left and by P:lQ2 from 
the right, and using (2.20) and (2.19) we obtain 

p;lo2 (ro,(qh") Q r+,(eo)) P;~"I = P? (r*,(eo) o Z+,(~-~Q/'))  P;~'z 

(p)qc@)/2p"l , Qi ( ~ 0 ~  (qh0l2) o 10, (eo)) pflo2 (2.23) 

- - c(u)qc(")flP>ol (ro,(eo) @ ro,(q-ho~2)) p;l0l v f i  + U. 
Similarily, from (2.14) and (2.15), we obtain 

p;tQ2 (xe,(eo) @ no,(9-h"2)) ?;lo2 = P:', ( ~ s , ( q ~ o / ~ )  o no,(eo)) P;I*~ 

+)q-c(P)/zP~"* (x,,(eo) o m 2 ( q -  ho/2 )) pQ,% (2.24) 
= C(u)q-c(Y)/zpo20, (m2(@/*) o (eo)) ~ 2 " ~  v p + 

and 

P;D,'~ (ne,(eo) o ~ o , ( q - ~ o / * ) )  p;lm2 = P>"I (nQ,(eo) 8 nQ,(q-*o")) P~~~~ 

P;D,@~ (no,(eo) o ~ r ~ ~ ( 9 - ~ ~ / ~ ) )  P:lQ2 (2.25) 

= ?,"'"I (no,(eo) o ne, (q-ho/2)) ~ 2 %  v p # U .  

In deriving (2.25), equations (2.23) and (2.24) have been considered. 

the form 
Now the most general Z?"l*z(x) satisfying the first equation in (2.9) may be written in 

d " l * y x )  = p,(x)  ,;I*, (2.26) 

where p,(x) ,  are unknown functions depending on x,  q and the extra non-additive 
parameters. Inserting the above equation into the second equation of (2.9) and multiplying 

v(c)ev(",)ev(o>) 



6556 

the resultant equation by P;f,’( from the left and by P:lo2 from the right, and then using 
(2.23), (2.24) and (2.25) to simplify the resulting equation, one finally finds that 

A I Bracken et a1 

{p, (x )  (xqC”’/* + ~(p)t(U)qC‘”’’2) - py(x )  (qC‘”’P + €(p)€(u)xqc‘””*)} 

~ P ~ 1 ~ 2 ( ~ g , ( e o ) 8 1 n ~ , ( q - ~ o l ~ ) ) p ~ l ’ ~  = O  v p # U .  (2.27) 

In many cases it is possible to determine when ’P;Lo2 (rro,(eo) @ no,(q-h@/z)) P>% # 0 
and thus to obtain a solution p,,(x) to the system of equations (2.27), recursively given by 

In the following sections we will work out three examples. 

3. V,(su(l, I)), its one-parameter family of irreps and R-matrix with non-additive 
parameter 

The quantum algebra U,(su(l, 1)) is defined by the generators [ e ,  f ,  q h ]  and relations 

with the following coproduct: 

A(qh)  = qh €3 qh A ( f )  = f € 3 q - h  + q h  @I f. (3.2) 
Note here that we have used a slightly different normalization for the generator h compared 
with the one in section 2. 

Infinite-dimensional unitary irreps of U,(su(l. 1)) have been described by several 
authors [16-18]. The classification is similar to that in the classical case, but there are 
some new features, notably the appearance of a ‘strange’ series of unitary irreps [18] with 
no classical analogue. For simplicity, we shall assume here that q # 1 is real and positive, 
and consider the infinite-dimensional unitary irreps D*(@) from the so-called discrete series. 
The irrep D-(@) has a highest weight @ but no lowest weight, and Dt(@) has a lowest 
weight -@ but no highest weight. In each case, the real parameter @ can take any negative 
value. 

The structure of D-(@) is very simple: Let V, be a complex Hilbert space with 
orthonormal basis (uo+, : p = 0. -1, -2, .  , .), and set 

A(e)  = e 81q4-h + qh 8I e 

(3.3) 

(3.4) 

The tensor product D-(@I) @ D-(@z) is completely reducible, and is easily seen to be 
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The vector S20,+0,+@, corresponding to the highest weight @ I  +@z+p, p = 0, -1. -2, . . . 
in the component D - ( @ ,  + @Z + !A), has the form 

~ r 3 2 @ ~  + i + I)  r i / 2 ( i )  u * , + ~ - ~  8 uo2+i (3.6) 
where c is a normalization constant. and rq(z) is a q-gamma function [I91 satisfying 
rq(z + 1) = [ z lqrq(z ) .  To verify (3.6), it is enough to check that S20,+%+P has the correct 
weight and is annihilated by A(e). 

Similar results hold for the structure of of(@) and for the tensor product D+(@,) 8 
D+(@z), but will not be used here. 

,All irreps of U,(su(l, 1)) are affinizable. In particular, we have the identification of 
eo. ho in section 2 with f,  h in this section: eo ++ f, h0/2 ct -h. In the case of (3.5). 
equations (2.20) take the form 

(3.7) 

where I ( A )  = A(A f 1) is the eigenvalue of the su(1, 1) quadratic Casimir invariant, 
I = h(h + 1) - f e  = h(h - I )  - ef. in the irrep with highest weight A, and now 
P y z  : D - ( @  I )@ D - ( W  + D - ( @ I  + OZ+II.). Equations (3.7) imply the identification 
of ~ ( p ) ,  C(p) in (2.27): e ( p )  U (-1)P and C(p)/2 U l(Q1 + O2 + p) .  

We will now determine pP ( x )  in (2.27) for this case. Observe [5] that the tensor operator 
A(q-h) ( f  8 qh)  behaves like a component of the adjoint tensor operator of U,(su(l, 1)). 
Therefore, P:l"z(n*, (f)8no,(qh))P,?*2, p # U ,  vanishes unless the two highest weights 
@I t @z + p and @I + @z + U, associated with 'F?"z and P:1*2, respectively, differ by a 
non-zero weight of the adjoint representation of Uq(su(l, l)), that is by a root of su(1, 1). 
This implies that P,""(no,(f) 8 mt.2(qh))P$o~ = 0 for p # U unless p = U * 1. 
Therefore, from (2.27) 

It follows immediately that 

which in turn leads to the quantum R-matrix 

(3.9) 

(3.10) 

(it should be understood that fl:=-, (...) = 1) where the scalar factor po(x) has been 
absorbed. 
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4. Uq(gl(lll)), Uq(gl(211)), one-parameter families of irreps and R-matrix with 
non-additive parameters 

It is well known [20] that type-I superalgebras admit non-trivial one-parameter families 
of finite-dimensional irreps which deform to provide one-parameter families of finite- 
dimensional irreps of the corresponding type-I quantum superalgebras [14]. Here we are 
only concerned with Uq(gl(mln)), all irreps of which are known to be affinizable. 

Choose { C ~ } Y = ~  u(Ej};,, as a basis for the dual of the Cartan subalgebra of gl(mln) 
satisfying 

Using this basis, any weight A may written as 

A J Bracken er a1 

( E t ,  & j )  = 6ij (Z,, Z j )  = -aij  (&j, Z j )  = 0. (4.1) 

and the graded half-sum p of the positive roots of gl(m1n) is 

(4.3) 

In what follows we will consider the one-parameter family of finite-dimensional irreducible 
U,(gl(mln))-modules V(u) with highest weights of the form A@) = (0,. ..,Olor, ..., e). 

We first consider the one-parameter family of two-dimensional typical irreps V(e) of 
U,(gl(l[l)) with the highest weight h(e) = (Ole). Assuming that IY # 0 # p, e+p  # 0, 
we have the following decomposition: 

where A1 = (Olw + 6) and A2 = ( - 1 1 ~ ~  + B + 1). The Casimir operator takes the values 
V ( a )  @I V(B)  = V V i )  V(Az) (4.4) 

C(e)  = -a(e + 1) 

(4.5) 

C(Az) = - ( ( Y + B ) ’ - ~ ( u + B ) .  
By considering the limit q --t 1, e -t B, it follows that €(A ) 

0. Thus from (2.27) we have 

E ( & )  = 1. Also it is 
easy to conclude that P~~(n,(eo)@Ina(q-h”z))P~~ # 0 and PA* (rr~(eo)~pirs (q-h”z) )P~~ = -  # 

P A Z ( ~ )  = - q“+o PA,(x) (4.6) 
1 - xqa+B 

which gives rise to the properly normalized quantum R-matrix 
1 - xqu+p li”% = P:( + - qa+o pi: (4.7) 

where again the scalar factor p ~ , ( x )  has been absorbed. 
It can be shown that the elementary intertwiners in the above equation take the form 

lff + Blq 0 0 

0 ([ff]q[B]q)I’zq(~+~)~z [el, 
0 [PI, ([w.lu[Blq)1/2q-(U+B)/2 0 

0 0 0 

F$ = [a +SI;’ 
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(4.8) 
0 0 0 

-WIq ) .  
0 ( [CYlq[B19)l '*q-(~+8)/2 

-IQ,], ( [ C Y 1 9 [ B 1 ~ ) ~ ' 2 q ( ~ + ~ ) ' ~  0 i: 0 0 [CY 

p"8 - n2 - [(U + SI;' 

The details of derivations will be published in [211. With the help of (4.8) the R-matrix 
(4.7) reads 
l W ( x )  

(4.9) 
To avoid misunderstanding, we remind the reader that the R-matrix satisfies the QYBE acting 
on V(u)  €3 V ( B )  €3 V ( Y )  
(I 63 W ( x ) ) ( d " Y ( x y )  €3 [)(I €3 iw(y)) = ( R a y ( , )  @I Z)(I c3 l w ( x y ) ) ( k @ ( x )  €3 I), 

(4.10) 
It should be pointed out that our six-vertex. free-fermion model R-matrix above is a 

trigonometric limit, up to a similarity transformation [ZZ], of Bazhanov and Stroganov's 
free-fermion, eight-vertex model R-matrix [7]. 

In the limit x = 0, we obtain the braid group representation U@ kO(0): 
0 0 

0 
For the special case CY = B = 1 this braid group representation is known. It was obtained 
from U,(gl(lll)) in [23, 241. 

We now come to the one-parameter family of four-dimensional typical irreps V(a) [25] 
of U9(g1(211)) with the highest weight A@) = (0,Ola). Assuming that CY # 0 # B ,  
CY + p # - 1. we have the decomposition [26] 

(4.12) 
w h e r e A ~ = ( O , O l a + p ) ,  A ~ = ( - l , - l l o r + ~ + 2 ) a n d A ~ = ( O , - I ~ o r + ~ + l ) .  Thus 

V ( 4  €3 V ( P )  = V(Ai) @ \'(Ad @ v(A3) 

C(a)  = -@(CY + 2) 

CGS) = -B(B t 2) 

C(A1) = -(CY + @)(CY + P + 2) 

C(A2) = 4 - (CY 3.8  CY +B+4) 

C(A3) = 3 - ((U + 19 t l)(a + B + 3) .  

(4.13) 
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(4.14) 

(4.15) 

which lead to the quantum R-matrix 

where again the scalar factor p ~ , ( x )  has been absorbed. The explicit expressions for 
the elementary intertwiners P:! appearing in this expression as 16 x 16 matrices will be 
published in 1211. 

5. Conclusion 

We have developed a systematic technique for constructing solutions to the QYBE with extra 
continuous non-additive parameters. The technique is a generalization of that used in 161 
for a different problem. We have treated in particular solutions associated to families of 
representations of the quantum algebras Uq(su(l. 1)). U,(gl(lll)) and Uq(gl(Zll)). The 
technique can be applied to other quantum (super)algebras with families of irreducible 
highest-weight or lowest-weight representations. Recently we have obtained many new 
results for type4 quantum affine algebras in [27]. We can also apply the technique to 
families of representations of Yangians and will then obtain rational R-matrices with extra 
parameters. Our general expressions (2.20) for the braid generators can also be used to 
conshuct multivariable link invariants from quantum (super)algebras. 

We expect that the possibility of extra continuous parameters in solutions of the Yang- 
Baxter equation will open up many new applications. The physical interpretation of the 
extra parameters will depend on the particular application. 

To give an example, the scattering matrices for quantum excitations in integrable two- 
dimensional quantum field theories are given by solutions of the Yang-Baxter equation. The 
ratios between the masses of the quantum excitations are determined by the locations of 
the poles of the S-matrices. Because these poles are fixed in all known non-trivial crossing 
symmetric R-matrices, these R-matrices are able to describe only theories in which the 
ratios of the quantum masses are fixed to particular values. In our R-matrices the locations 
of the poles depend on the extra parameters. So if our R-matrices are used as S-matrices, 
these parameters have the interpretation of adjustable quantum masses in integrable theories. 
This application of the R-matrices derived in this paper is studied in [28]. 
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